

Additive Manufacturing The right supply has many forms

Nippon Gases is more than just a supplier of industrial gases. As "The Gas Professionals" we are experts in gas manufacturing, gas supply and gas application.

Nippon Gases is one of the leading industrial gases companies in Europe and is part of Nippon Sanso Holdings Corporation - the parent company of the Japanese Taiyo Nippon Sanso, the American Matheson Tri-Gas Group and the European Nippon Gases.

Our Group was originally founded in 1910 in Tokyo and, since then, we have relentlessly developed our solutions and services for our customers. The key to target-oriented use of industrial gases is a customised analysis of your processes.

Application-orientated advice based on many years of international experience and excellent service, are for us the basis for a trusting customer-supplier relationship.

In everything we do, safety is always at the centre of our considerations. It is an inviolable part of our corporate culture, just as we are committed to protecting the environment and to acting sustainably and ethically.

Reliable gas supply from Nippon Gases

Separation of ambient air mainly produces N_2 , O_2 , Ar, but also rare gases (Ne, Kr and Xe).

Gases can be z v z v vlied in different ways:

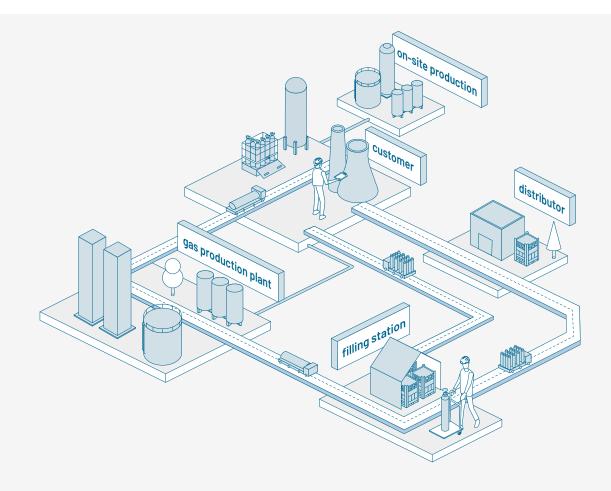
Pipeline

Truck/tank: as cryogenic liquid

- **Cylinders:** compressed gas or directly produced on-site

Versatile

Tailor-made gas supply


Gases influence the performance of your machines, the efficiency of your processes and ultimately the quality of your products.

It does not matter whether you are producing or researching. Nippon Gases' product range includes all atmospheric gases as well as process and specialty gases. As standard gas or custom-made.

From industrial units to high purity gases and gas mixtures.

Ideal for proven processes or new technologies. Whether you need just a single cylinder or thousands of tons per day. With our gases, you're always well supplied.

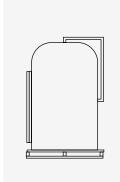
So that you achieve the results you expect.

Cylinders

The most versatiles

Cylinders are the standard for the wide range of shielding gases.

Plug&Work® is Nippon Gases integrated valve. Thanks to their integrated pressure regulator, cylinders with Plug&Work® are not only ready for use in just three steps, but also very easy to operate.

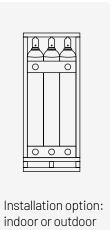

Installation variant: indoors

MicroBulk®

The medium ones

These tanks close the economic gap for medium consumption. Suitable for central gas supply systems, the product – Ar, N_2 , O_2 and CO_2 – is stored liquified in small tanks.

They offer all the advantages of a liquid supply with lower installation and licensing costs. They can be filled on site, and also be connected to gas mixing stations.



Installation option: outdoor

Bundles

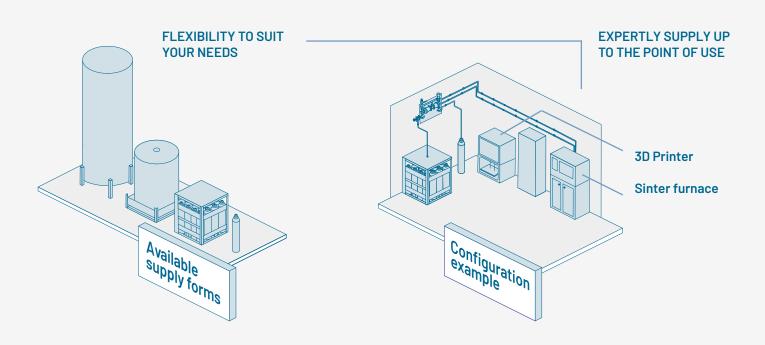
The small ones

Bundles can be connected to the central gas supply. A bundle is about the size of a Euro-pallet and consist of several individual cylinders piped together with a common outlet.

Tanks

The large ones

Vacuum-insulated tank systems are suitable for air gases and connection to central gas supplies. The liquefied product is stored onsite in large quantities.


Adequate

Up to the point-of-use

The choice of the right supply solution directly influences the safety and quality of your operation.

Four criteria are decisive here, especially at the point of use:

- Continuous availability
- Required volume
- Purity
- Compliance with legal requirements for gas supply plants

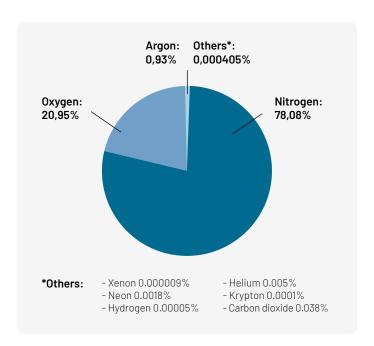
Ad-hoc solutions

We analyse your needs based on key questions like:

- Gas supply layout?
- Available installation options/areas?
- Prerequisite for continuous gas supply?
- Material of gas supply line?
- Quality of the tapping/control equipment?

Our experts therefore support you from A to Z:

From the choice of form of supply, via the layout of the accessories to the delivery of the gas at the point of use.


Where do gases come from?

Air

Is a mixture of several gases. Nitrogen, oxygen, argon, carbon dioxide, water vapor and trace amounts of other elements that make up the atmosphere.

Air Separation Units (ASU)

Air Separation Units (ASU) are industrial plants that separate oxygen, nitrogen and argon from all the other components and liquefy them.

The air liquefaction

In 1895, a technical method was patented that enables the liquefaction of air and the separation of the atmospheric components oxygen, nitrogen and argon in larger quantities. Since 1902, this method has been used industrially in air separation plants. Today, the separation process is still based on the Joule-Thomson effect: compression, expansion and cooling.

The different boiling points after purification and cooling are used to separate the air into its main components. This primarily involves the separation of liquid oxygen (LOX) and nitrogen (LIN). Liquid argon (LAR) must be generated by an additional process step in a further separation column.

Air Separation

Plant types

Cryogenic

Distillation

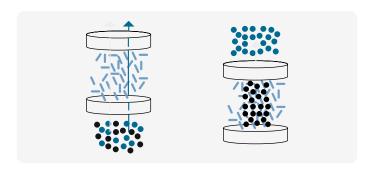
- Air Separation Unit (ASU/ASP)
- Multiproduct (O₂, N₂, Ar)
- Gas or Liquid
- Base Plant or onsite
- High purity

Air Separation Unit (ASU/ASP)

- Multiproduct (O₂, N₂, Ar)
- Gas or Liquid
- Base Plant or onsite
- High purity

N-Plant

- Single product (N₂)
- Gas Supply (no liquid)
- Onsite



- Nitrogen: -196 ºC
 - Argon: -185 ºC
- Oxygen: -183 °C

Non-cryogenic

Adsorption

Adsorbent retains the undesired gases from the compressed air and allows the desired pure gas to pass.

VPSA (Vacuum/Pressure Swing Adsorption)

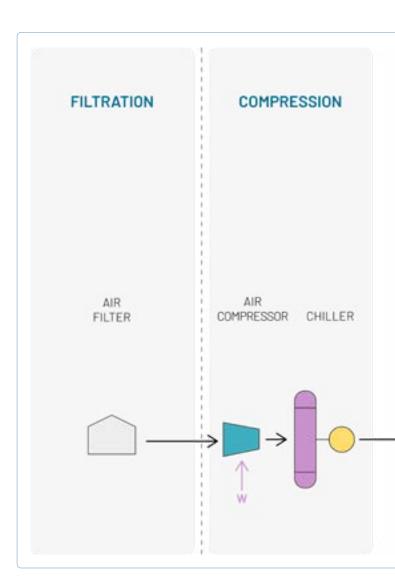
- Single product (O₂)
- Gas
- Purity < 95 %</p>
- Onsite

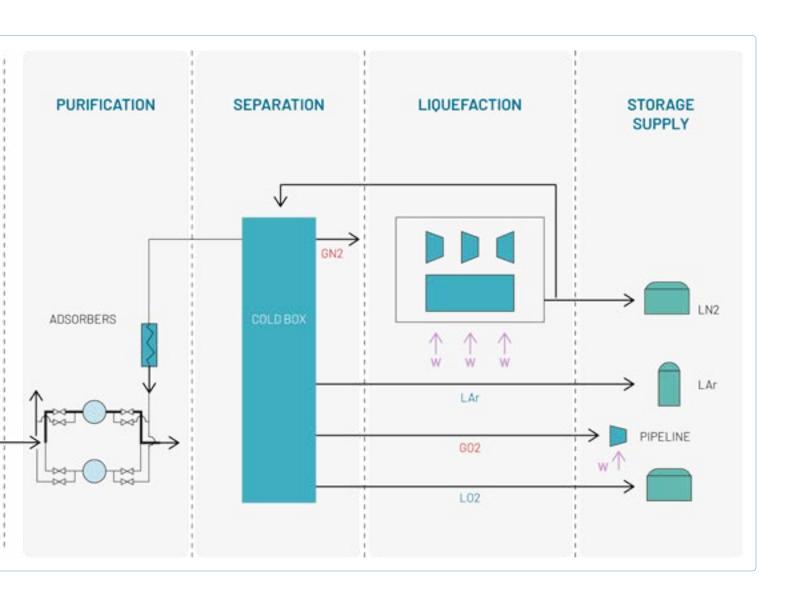
PSA (Micro On-site) (Pressure Swing Adsorption)

- Single product (N₂)
- Gas
- Purity < 99,5 %</p>
- Onsite

Air gases properties

Process overview


Air gases have different liquefaction temperature or boiling points.


– Oxygen: -183°C

Argon: - 186°C

– Nitrogen: -196°C

- 2 Air gases compression produces gas heating.
- 3 Air gases expansion produce gas cooling.
- 4 Liquefaction decrease its volumen more than 600 times.

Air Gases

Oxygen (O₂)

Density, gaseous (1 bar, 15°C): 1,34 kg/m³ **Properties:** odourless, tasteless, colourless

Boiling point: 183°C.

Nitrogen (N₂)

Density, gaseous (1 bar, 15°C): 1,17 kg/m³ **Properties:** odourless, tasteless, colourless

Boiling point: -196°C.

Extraction:	From the liquefaction of air with subsequent distillation	
Nitrogen in cylinder:	10 I, 200 bar / 300 bar	
	20 I, 200 bar / 300 bar	
	50 I, 200 bar / 300 bar	
Properties:	Inert	
	Non-toxic	
	Non-flammable	
	Lighter than air	
	Main-fraction	
Applications:	Pressurise, inertise, purge	
	Additive Manufacturing	
	Gasmixture for beverage industry, food packaging	
	Lab gas with different purity	

Argon (Ar)

Density, gaseous (1 bar, 15°C): 1,67 kg/m³ **Properties:** odourless, tasteless, colourless

Boiling point: -186°C.

Extraction:

From the liquefaction of air with subsequent distillation

Argon in cylinder:

10 I, 200 bar / 300 bar

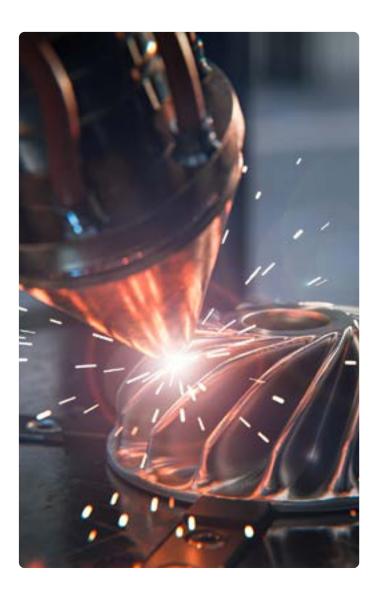
20 I, 200 bar / 300 bar

50 I, 200 bar / 300 bar

Properties:

Inert

Non-combustible


Heavier than air

Applications:

Inert gas welding

Additive Manufacturing

Lab gas with different purity

Process Gases

Helium (He)

Density, gaseous (1 bar, 15°C): 0,17 kg/m³

Properties: Highly flammable

Boiling point: -269°C.

Extraction:	From the liquefaction of air with subsequent distillation
Helium in cylinder:	3 to 50 (200 / 300 bar)
Properties:	Non-flammable
	Colourless noble gas
	Lighter than air
	Very high thermal conductivity
	Noble gas
Applications:	Gas mixture for welding
	Laboratory gas with different purity
	Laser applications
	Additive Manufacturing

Hydrogen (H₂)

Density, gaseous (1 bar, 15°C): 0,08 kg/m³

Properties: Highly inflammable

Boiling point: -253°C.

Extraction:	From the chemical industry e.g. chlorinealkali electrolysis
	From the oil industry
Hydrogen in cylinder:	Significance in analytics with high purity (200/300 bar)
	Gas mixture with nitrogen as forming gas (200/300 bar)
	Gas mixture as welding gas (200/300 bar)
	Fuel gas in metallurgy (200/300 bar)
Properties:	Lightest gas
	Colourless
	Odourless
	Highly flammable
Applications:	Lab gas with different purity

Carbon dioxide (CO₂)

Density, gaseous (1 bar, 15°C): 1,85 kg/m³

Properties: odourless, tasteless, colourless

Boiling point: -78°C.

Extraction: From combustion processes in the chemical industry

From natural sources

Carbon dioxide in cylinder:

Liquid in the bottle below 31°C

At room temperature cylinder pressure approx. 60 bar

Different bottles for gas and liquid

extraction (riser tube)

Properties:

0.04% in air

Non-flammable Heavier than air

Good solubility in water

Applications:

Beverage carbonation

Fire extinguishing agents

Medical gases Welding (C18)

Acetylene (C₂H₂)

Density, gaseous (1 bar, 15°C): $1,09 \text{ kg/m}^3$

Properties: Highly flammable, colourless

Boiling point: -84,7°C.

Extraction:

Made from carbide and water

Synthetic

Acetylene in cylinder:

The bottle contains calcium silicate hydrate as a porous mass. This is

impregnated with acetone, which in turn can dissolve large amounts

of acetylene.

Properties:

Explosion limit: 2.3 - 82 vol.% (air)

Water solubility: At 20°C 1 litre

ethyne/I water

Other solubilities: Very good in

acetone and alcohol

Applications:

Fuel gas

Process Gases

Neon(Ne)

Density, gaseous (1 bar, 15°C): 0,842 kg/m³

Properties: Odourless, colourless

Boiling point: -246°C.

Extraction:	From the liquefaction of air with subsequent distillation
Neon in cylinder:	10 I (200 bar)
	50 I (165 / 200 bar)
Properties:	Inert
	Non-flammable
	Noble gas
Applications:	Laser gases for electronics

Krypton (Kr)

Density, gaseous (1 bar, 15°C): $3,51 \text{ kg/m}^3$

Properties: odourless, colourless

Boiling point: -153°C.

Extraction:	From the liquefaction of air with subsequent distillation
Krypton in cylinder:	2 I (82 bar)
	10 I (82 / 144 bar)
	50 I (144 bar)
Properties:	Inert
	Non-flammable
	Non-toxic
	Noble gas
Applications:	Gas for lamp fillings
	Filling for insulating glass
	Surface treatment for tools
	Research
	Laser gases for electronics
	lon propulsion for satellities

Xenon(Xe)

Density, gaseous (1 bar, 15°C): 5,51 kg/m³

Properties: odourless, colourless

Boiling point: -108°C.

Extraction: From the liquefaction of air with

subsequent distillation

Xenon in cylinder: 21 (58,4 bar)

10 I (58,4 bar) 50 I (58,4 bar)

Properties: Noble gas

Xenon reacts directly with

fluorine only

Applications: Gas for lamp fillings

Filling for insulating glass
Surface treatment for tools

Research

Laser gases for electronics lon propulsion for satellities

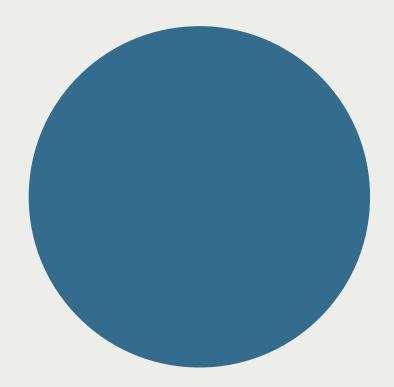
Properties of Cryogenic gases

Conversion table for cryogenic liquefied gases

Oxygen O2	90,05 K	1 m³	^ 1.171 /	^ 1.337 kg
	-183,10 °C	1 l	^ 0.854 m ³	^ 1.142 kg
	Boiling temperature at 1 bar	1 k	^ 0.748 m ³	^ 0.876 l
Nitrogen N2	90,05 K	1 m³	^ 1.449 /	^ 1.170 kg
	-183,10 °C	1 l	^ 0.690 m ³	^ 1.808 kg
	Boiling temperature at 1 bar	1 kg	^ 0.855 m ³	^ 1.238 l
Argon Ar	90,05 K	1 m³	^ 1.198 /	^ 1.669 kg
	-183,10 °C	1 l	^ 0.835 m ³	^ 1.395 kg
	Boiling temperature at 1 bar	1 kg	^ 0.599 m ³	^ 0.717 l
Carbon dioxide	90,05 K	1 m³	^ 1.757 /	^ 1.849 kg
	-183,10 °C	1 l	^ 0.569 m ³	^ 1.052 kg
	Boiling temperature at 1 bar	1 kg	^ 0.541 m ³	^ 0.951 l

© 2024, Nippon Gases All rights reserved

Learn more


nippongases.com

Contact

info@nippongases.com

Social Media

@nippongases youtube.com/c/NipponGases linkedin.com/company/nippon-gases/

